A Heterogeneous Computing
Framework for Computational Finance

Gordon Inggs, David Thomas and Wayne Luk

Imperial College

» Introduction

- Computational Finance

- Forward Financial Framework (F’)
- Experimentation

- Concluding Remarks

Introduction

- Financial Derivatives are a critical
component of modern commerce

- Computationally-intensive pricing models
are used to value derivative products

- The Financial Industry is a major consumer
of high-end computing

Use Case

- Large Institution

- Many Users

- Many Computational Tasks (with
dependencies)

- Heterogeneous Computing Resources

Our Work

- Domain Specific Approach

- Three Challenges:

1) Implementation — Efficient, Automated across
range of platforms

2) Coping with Dependencies — Removal of
redundant computations

3) Partitioning — Domain Knowledge-guided
Partitioning

Computational Finance

- Application Background:

- Forward Looking Derivatives
- Derivative Valuation
- Monte Carlo Algorithm

- Computational Domain:

- Fundamental Concepts
- Domain Relationships

Forward Looking Derivatives

» An option contract grants the right to buy or sell a
defined asset at a defined point 1n the future, for a
defined price

» A forward-looking option is one with a single
defined point at which 1t may be exercised

How to value a Derivative

Strike Price

Price

wn

)

S

% :
=

@

_\\

Expiration
Time

Monte Carlo Algorithm

» A popular met

« Use amodel of

nod — flexible, robust

the asset to simulate the

underlying asset through 1ts life-time:
dS=pdt+aSdw,

» Average the payoff ovelr many_sample paths:
V = max(e " Nzk , Skr— K, 0)

Computational Finance
Domain Concepts

Pl >

Computational Finance
Domain Concepts

Relative Time (AT)

Price(S,),
Current Time(t)

Domain Dependencies - “Fusion”

Decreased
Work

=949
30 &

Increased
Parallelism

Domain Dependencies - “Fission”

Decreased
- Work

. :
| 1
| |
| |

01 : o1 b :
| |
) 1
[|
\

| i 1 : 3 @

Increased
Parallelism

Forward Financial Framework (F?3)

- Application Framework vs (Domain
Specific Language)

- Supports range of option types, underlying
models and Monte Carlo Pricing

- Multicore CPUs, GPUs (via OpenCL) and
Maxeler FPGA

- Open Source

F° Fundamentals

F° Fundamentals (I1)

#Declaring the Underlyings

Heston_II Heston_Underlying (0.05,100,0.09,1,—-0.3,2,0.09)
Heston_IV Heston_Underlying (0,100,0.09,1,—-0.3,1,0.09)

#Declaring the Options

Option_1 = European_Option (Heston_II,True, Current_Price ,5)

Option_2 = Barrier_Option (Heston_II ,True,Current_Price ,5,4096,True,120)
Option_3 = Barrier_Option (Heston_IV , True,Current_Price ,5,4096,True,120)

F- Implementation Flow

Domain-Orienteted Description

KSO 1 :
\ E
i ' | Portfolio of
KSO 2 E Underlyings
; and
: Derivatives
KSO3 |—» :

Monte
Carlo

Solver

FPGA
Solver

Multicore
Solver

FPGA
Libraries

Multicore
Libraries

F-° Implementation Flow (I1)

#Creating the platforms and solver objects
multicore cpu = Multicore CPU ()
maxeler fpga = Maxeler FPGA ()

mc_solver cpu = Monte_Carlo(derivative—.[Option_l ,Option 2] ,10e7,
multicore cpu)

mc_solver fpga = MonteCarlo(derivative=[Option 3],10e7,
maxeler fpga)

#Calling the CPU solver to generate,

mc_solver cpu.generate ()
mc_solver cpu.compile ()

results = mc_ solver cpu.execute ()

compile and exzecute

F” incorporates Domain Knowledge

- Structure — The framework's objects mirrors
the domain concepts

- General Optimisation — The “fusion” rule is
used to avoid redundant computations

- Partitioning — The *fission” rule allows for
flexibility during partitioning

Experimentation

» 3 Claims:
1) Efficient, Automated Implementations
2) Removal of Redundant Computation

3) Domain Knowledge can guide partitioning

15t Claim — Efficient, Automated
Implementations

- Compare against external implementations:

- Kaiserslautern Barrier Option Pricing Benchmark
- Imperial College Asian Option Pricing

-+ 10 Million Simulations, 4096 Points per Sim

- Multicore CPU (8 core Intel Core i7), GPU*
(AMD FirePro W5000) and FPGA (Maxeler
Max3 — Virtex 6)

- Latency and Energy

Implementation

Latency (S)

10%;

104 !

103 I

102 I

10!

CPU Comparison

FPGA

GPU
CPU

European Barrier

Evaluation (Latency)

Double Barrier

Option Type

.............

........................

Digital Double Barrier

Asian

Energy ()

108 _

107 i

106 L

105 i

103 L

102 L

101 L

Implementation Evaluation
(Energy)

CPU Comparison

Y
~
~

European Double Barrier Digital Double Barrier

Option Type

2" and 3" Claims — Exploiting

Domain Knowledge
- Construct Portfolio out of Kaiserslatuarn

Benchmark + Imperial Asian Option

- Multicore CPU and FPGA, independently and
together

- Latency

Domain Rule Optimisations

CPU + FPGA

FPGA Only

Multicore CPU Only

0

Random Partitioning

/
N

Domain Knowledge-guided Partitioning

N

Using "Fusion" Rule Not using "Fusion”

3 4 5

Latency (Seconds)

Conclusion

- Our approach to Computational Finance as a
Problem Domain

- Contributions:

1) Efficient, Automated Implementations
2) Removal of Redundant Computations
3) Domain-Knowledge Guided Partitioning

- Is Domain Specificity worth it?

Future Work

» More Heterogeneity!

- Runtime Characterisation and Modelling

- End-User Exploration of the Design Space

Kaiserslatuarn Benchmark

-
- e
-
-
-

Removing Redundant Computations

2.0

- Projected FPGA
—— Multi-core CPU

e
=

.
=)

p—
by

Performance Improvement Factor
—
N

7
=]

0.8 4096 8192
Possible Design Permutations, sorted by performance improvment

Latency (seconds)

DK Guided Partitioning

| Multicore CPU
| - FPGA-only Runtime
4.
o] Random Allocation Median (3.38)
'
/
P4 Heuristic Allocation Median (3.15)
¥ 4
2! Domain Knowledge Result (2.99)
1.
OL

Possible Design Permutations

Future Work

Task
Description
Representation
of Trade-offs

Trade-off
Selection

‘ Calculation! |

(Result)

